Optimizing Tetris AI with an Asynchronous Particle Swarm

Todd O. Gaunt
Department of Computer Science
University of New Hampshire
Durham, NH 03824 USA
toddgaunt@protonmail.ch
May 12, 2018

Abstract

Tetris is a classic computer game with indefinite playtime
and limited piece lookahead. This requires a real-time al-
gorithm with the ability to evaluate the value of a given
game-state. Real time depth-limited DFS works well on the
limited state-space of Tetris, since all nodes can be visited
and evaluated accordingly. Beyond a depth of two, how-
ever, the amount of states generated becomes excessive and
slows down the search noticeably. Since there is only limited
lookahead with a depth of two, the static evaluation func-
tion has little room for error to allow for indefinite play.
To discover the optimal parameters to use for the static
evaluation function, an Asynchronous Particle Swarm Op-
timization search was performed on the game of tetris. A
description of the particle swarm algorithmn used, as well
as the techniques used during the depth-first search to al-
low for fast state-space searches in real-time, are described
in this paper.

Introduction

In real-time search problems where there is not enough time
to compute the path to the goal state, a state evaluation
function must be used over a goal specification function in
order to be able to return paths to states that will poten-
tially lead to the goal. State evaluation functions compute a
score for the state it’s evaluating utilizing problem-specific
heuristics, and assign a weight to each heuristic according
to its importance. Sometimes appropriate weights can be
found through trial and error by hand. Nevertheless, when
the set of heuristics grows this can become a tedious and
time consuming that may not find weights even close to
optimal.

A way to automate this task is to use an algorithm that
can explore a function to discover the set of inputs that
results in a minimum or maximum value of the function.
Particle Swarm Optimization is one algorithm that can do
such a task, and is the one chosen for this paper. The main
idea of the algorithm is to have n particles be uniformly
randomly distributed over an initial range in the function
input space, these positions being heuristic weights for a
static evaluation function in this case. Then the algorithm

iterates over every particle, changing its velocity based on
its own past position, its own best discovered position, and
the best discovered position of the entire swarm until the
maximum number of iterations given has been achieved.

The game of Tetris is a classic computer game that can
utilize a real-time search algorithm that can be optimized
via Particle Swarm Optimization. A Particle Swarm was
suitible for Tetris as the algorithm is fairly straightforward
to implement asynchronously, which is important since the
fitness function used by the Tetris Al can take a long time
to evaluate, seeing as the function produces higher scores
the longer the Al is able to play Tetris.

Domain: Hidamari, a Tetris
Implementation

Tetris is a classic digital game originally made in the 1980s
as a single player puzzle game. The game is played on a
10x20 grid with seven possible pieces for the player to con-
trol. Each piece comes from the top of the field one at a
time, constantly falling at a fixed rate. The goal is to stack
the pieces in such a way that an entire row of 10 filled in
tiles is made. This row is then cleared, score is rewarded to
the player, and finally any blocks above the cleared row are
shifted down by one block.

In order to aid the player, there is usually at least one
preview piece shown to the player. This preview piece is the
next piece that will be spawned by the game for the player to
control once the current falling piece locks into place. Given
this information, a player can move the current falling piece
into place with plans for the next piece in mind. This allows
for more optimal moves to be made, which in turn gives the
player an opportunity to plan for either achieving higher
scores or to arrange the board in such a way that promotes
long-term survival. This is what motivated the development
of an Al that can play a game of indefinite length with an
opportunity to plan within real-time.

The goal of the game has not always been standardized,
but getting as high a score as possible while playing for
as long as possible is a common one. For the purposes of
this project, an AI that can clear 100,000 lines in three
consecutive games is considered a success. The number
100,000 lines is chosen as that would mean at the very

least 100,000,000 points would be scored under the stan-
dard Tetris scoring system, where even pro players have
difficulty getting past 1,000,000. The AI must clear 100,000
lines three games in a row to provide evidence that it can
play to the maximum score of 100,000 consistently.

Hidamari, the Tetris implementation written for this
project, attempts to follow the Standard Tetris Guidelines
as closely as possible, with the goal of the player to clear
as many lines and get as high a score as possible before
losing. The rules here are similar to any modern Tetris im-
plementation, but the implementation is very lightweight.
The playfield is represented as a bit board, an array of 23
16-bit integers. Each integer represents a single row of the
board, and in turn each bit represents a single block on the
playfield. This method of representing the game reduces
most manipulations of the game board into simple bit-wise
operations and shifts. This speed allowed for the particle
swarm and the Al to simulate the game in-memory very
quickly, speeding up the optimization and not causing any
pausing in-game respectively.

The goal of this project was to create an Al that would be
able to play the game of Tetris without consuming to many
computational resources. While the depth-first search used
very little processing power, and appeared to work well even
with heuristic weights derived from manual guesswork, it
couldn’t play for much longer than 30 minutes consistently.
To rectify this, different methods of function optimization
were researched, and particle swarm optimization was cho-
sen. The simplicity of the algorithm, and the ease of making
the algorithm perform in parallel were the main considera-
tions for choosing it. Parallelism was essential, as simulating
long-running Tetris games in memory requires a lot of com-
putational power, and the server the particle swarm ran in
had four cores to be utilized.

Depth First Search with Static Evaluator

The backbone of the AI written for Hidamari is a simple
depth-first search through the state-space of the game. A
few simplifications were made for the state-space to conserve
memory, and a depth limit of two is used for the search.
The simplifications that were made to the game were to only
consider the actions of moving and rotating the piece before
locking it in the place at the bottom of the playfield. This
way, only a single state is needed to represent all movements
required to lock a given piece into the playfield, rather than
one state per move. With the state-space simplified to be
so few nodes, and with a branching factor of 36, the depth-
first search is able to exhaustively evaluate all 1296 nodes
of the depth-two before even a single frame of the game is
rendered to find the best possible state.

The static evaluation function used by the depth-first
search utilizes three distinct heuristics, as shown in figure
1, to compute a score for any given state. The higher the
score the worse the state is, with the ideal score being ex-

actly 0. Each heuristic is given a weight multiplier, which
decides the relative importance of each heuristic. This is
what determines how well the AI plays.

Heuristic 3
(Number of Holes)

e

Heuristic 2
(Aggregate Height)

g

Heuristic 1
(Aggregate Height
Difference)

i

ITTITITTITTIT]
[TTTTITTITTT]
[TTITITTITITII]

10-5=5
6

6

[TTTTITTITITITITITITITITT]
ITTTTITTTITTITITITITITIT]
[TTTTITTTITITITITITITITIT]

4 4
133333 133333]

Figure 1: Visualization of heuristics

The first heuristic computes the aggregate height differ-
ence between all columns. The reason being that difference
in column height, or playfield bumpiness, is a negative at-
tribute as most pieces used in the game do not slot into
bumpy boards very well. The second heuristic used is to
compute the aggregate height of all columns on the play-
field. This negative attribute should be avoided to prevent
a game over, encouraging overall low column height. The
third and final heuristic is to count the number of ”holes”
in the playfield. A "hole” is defined as any empty tile with
a filled tile above it. Empty tiles with an opening to the
left or right are still counted as holes in this way, since the
AT cannot move pieces down and then to the side, only to
the side and then down. Holes are an unattractive feature,
as they require clearing all lines above them in order to re-
move them from the board. Minimizing holes is important
for optimal play.

Asynchronous Particle Swarm
Optimization

Particle Swarm Optimization is a function optimization al-
gorithm that is used to find either the maxima or minima
of a function. The inputs of a function are represented as
spatial dimensions of a particle that has both a position and
a velocity. Every iteration of the algorithm, the particles’
positions are updated along with their velocities. The ve-
locity update is done with respect to the rest of the swarm
and the particles’ own knowledge of past positions. This al-
lows the swarm to eventually converge towards a maximum
or minimum value of the function, while also engaging in
individual exploration to influence the swarm.

To parallelize the algorithm, an atomically accessed prior-
ity queue containing the swarm’s particles prioritized by the
number of iterations performed is shared among the threads
used to process the particles. The job of each thread con-

sists of popping a particle off the atomic queue, updating its
velocity and position, potentially updating the particle’s lo-
cal best position, and then potentially atomically updating
the swarm’s global best position. After processing that par-
ticle, if the particle still had iterations left to complete, the
thread puts the updated particle back into the queue with
an incremented iteration count. Otherwise, the thread does
not put the particle back. This process is repeated until
there are no more particles to be popped off the queue.

Pseudo Code and Explanation

0 define apso()

1 A

2 let n be the number of threads

3 let s be the swarm of particles

4 let pq be the atomic priority queue

5 let bu be the upper bound of the search
6 let bl be the lower bound of the search
7

8 for each particle in s {

9 // Note that v, x, and p are

10 // vectors of the same dimensionality
11 // v is the particle velocity

12 // x is the particle position

13 // p is the best particle position

14 // g is the best swarm position

15

16 let v := U(-|bl - bul, |bl - bul)

17 let x := U(bl, bu)

18 let p = x

19

20 if it is the first particle

21 s.best_position :=p

22 push(pq, particle(l, v, x, p))

23 }

24

26 for i in 0..(n - 1)

26 thread_spawn(lambda () {work(s, pq);1})
27

28 work(s, pq)

29

30 for i in 0..(n - 1)

31 thread_join()

32

33 return s.best_position

34 %

The ”apso” procedure begins by initializing the swarm of
particles with uniformly distributed randomized vectors for
velocity and position on lines 16 through 18. Each parti-
cle is then queued into the priority queue on line 22. After
initialization is complete, n — 1 work threads are started
to begin processing the particle queue. The main thread

then also begins to perform work after the other threads
have been spawned. Finally once all the particles have been
processed a sufficient number of iterations, the main thread
joins all of the threads and returns the best position vec-
tor found by the swarm. If only one thread is specified,
the algorithm behaves similarly to the serial version, albeit
slower because of the additional overhead to guarantee no
detrimental data races occur.

0 define work(s, pq)

1 A

2 s is the swarm of particles

3 pq is the atomic priority queue

4

5 loop {

6 let particle := pop(pq)

7 if NONE = particle

8 break

9

10 let i := particle.iteration

11 let v := particle.velocity

12 let x := particle.position

13 let p := particle.best_position
14 let g := atomic_load(s.best_position)
15

16 // Update the velocity

17 let rp := U(0.0, 1.0)

18 let rg := U(0.0, 1.0)

19 let v2 := PHI * v

20 + ALPHA * rp * |p - x|

21 + BETA * rg + |g - x|

22

23 // Update the particle’s position
24 let x2 :=x + v

25

26 // Evaluate the fitness

27 if £(x2) > £(p)

28 let p2 := x2

29 if £(p2) > £(g)

30 atomic_store(s.best_position, p2)
31

32 if i < MAXIMUM_ITERATIONS

33 push(pq, particle(i + 1, v2, x2, p2))
34 }

35 }

Each thread in the apso algorithm uses the ”work” func-
tion defined above. An infinite loop begins on line 7 which
will only be broken out of once the work queue has no more
particles to be processed, terminating the thread. If there
is a particle to be processed after atomically popping it out
of the queue, its position and velocity are updated accord-
ing to lines 17 through 24. The constants PHI, ALPHA,
and BETA control how much inertia, the past local best
position, and the past swarm best position influence the

updated velocity. If the fitness of the updated position is
greater than the particle’s last known best position’s fitness,
the position is saved as the particle’s last known best posi-
tion. The same is then done to the swarm’s last known best
position on lines 27 through 30. At the end of the loop, on
lines 32 and 33, the updated particle is pushed back onto
the queue with an increased iteration count if and only if
its iteration count is less than MAXIMUM _ITERATIONS.

Evaluation and Results

The goal stated for this project was to achieve a Tetris Al
that could play at least three games to 100,000 points in a
row. The particle swarm was run on Hidamari, the Tetris
implementation used for this project, for 4 days with 50
particles over 100 iterations. The parameters to the particle
swarm were ¢ = 0.8, « = 0.1, and § = 0.2, with all particles’
positions initialized randomly within the bounds of [0, 1] for
each dimension. The values for ¢, a, and 3 were chosen to
encourage swarm exploration, as the inertia retained with
each velocity update was rather high. The bounds for the
initial distribution were chosen as between 0 and 1 since the
heuristic weights are relative to each-other, and negative
weights are mostly worthless. A range between 0 and 100
would’ve worked just as well. Figure 2 is a visualization
of what a 10 particle swarm running for 20 iterations looks
like under these same parameters. Lines drawn through the
points represent the particles’ movement over time.

The fitness function used for the swarm played three
games of Hidamari using the current particle position as
heuristic weights for the state evaluation function, returning
the least number of lines cleared of all three games played.
This was done to avoid any heuristic weights that could not
consistently pass 100,000 lines cleared. While there were a
few distinct heuristic ratios that were able to achieve this
goal, the final weights chosen for the AI were as follows:

Heuristic Weight
Heuristic 1 (Aggregate height difference) | 0.848058
Heuristic 2 (Aggregate height) 2.304684
Heuristic 3 (Number of holes) 1.405450

Heuristics used (Averaged over 30 runs)

0.008 q

0.007 q

0.006 q

0.005 q

0.004 1

0.003 q

DFS Running Time (seconds)

0.002 q

0.001 4

0.000

None [H1] [H2] [H3] [H1H2] [H1H3] [H2H3] [H1H2H3]

Figure 3: Running time of a single DFS traversal with dif-
ferent heuristics applied.

After deriving these heuristic weights from the particle
swarm, the AI was put to the test. After running it for
a few hours without any visualization, the Al was able to
clear over 500,000 lines before manual termination.

The computation required for each heuristic, as seen in
figure 3, was nearly equivalent. The DFS running time was
increased by nearly constant amount for each additional
heuristic run in the static evaluation function. Heuristic
3, number of holes, could potentially be removed for more
performance at the cost of Al longevity since it contributes
to the evaluation function the least. Removing it, however,
is probably not worth constant computational performance

Figure 2: Visualization of 10 particles in a swarm optimizing gains since it will noticeably degrade the AI’s ability to play
heuristic weights over 20 iterations of Hidamari each in 3D the game.

Conclusions

For a performant Tetris Al that can be adjusted for varying
difficulties, a simple depth-first search evaluating the first
1296 states proved to be sufficient. Currently the depth-first
search uses 180kb, but this amount could easily be reduced
as the depth-first search is not optimized to require memory
based on only the depth of the tree, but instead has similar
memory requirements to a breadth-first search.

The running-time of the algorithm with all three heuris-
tics, as seen in figure 3, can be run twice every frame when
the game is rendered at sixty frames per second on a dual-
core laptop processor!. This is more than fast enough to
provide a responsive experience on many devices, consider-
ing that the AI will usually have a few seconds to compute
its plan while the current piece is falling, not just a sixtieth
of a second.

Particle Swarm Optimization proved successful in finding
good heuristic weights while reducing the search-space over-
time allowing for very refined heuristic weights to be dis-
covered for the Al in a reasonable time. The asynchronous
modification of the particle swarm optimization algorithm
was very beneficial, as it allows expensive fitness functions
used by the algorithm to be run concurrently, which was
critical since the fitness function used in this case was es-
sentially running three games of Tetris before returning.

Future Work

There are numerous improvements that could be made to
reduce memory usage and take advantage of parallel pro-
cessing. The depth-first search used for the Al is just a
modified breadth-first search using a stack rather than a
queue. This could be modified to instead take advantage
of how a depth-first search can use memory proportional to
its depth rather than breadth, reducing the current 180kb
required by the AI to some much smaller amount.

AT planning could also be optimized to run on a sepa-
rate thread, in case it takes longer to create a plan than it
does to render a frame. This would allow for the Al to take
more time to perform more complex planning such as per-
forming a depth 3 search in the state-tree, or computing
more computationally expensive static evaluation heuris-
tics. Currently parallelization isn’t quite necessary, as the
computation finished in a timely manner, but any future
work on the Al may require it.

Since the Al only requires a representation of the current
visible Tetris playfield, current falling piece, and the pre-
view piece, it could potentially be adapted to work with any
Tetris implementation rather than just Hidamari. The Al
doesn’t care about gravity, wall-kicks, scoring, or other ele-
ments that are often slightly different between Tetris imple-
mentations. As long as the core properties of line-clearing,
piece rotations, and piece locking are present, the Al can

Hntel(R) Core(TM) i5-5300U CPU @ 2.30GHz

be adapted to any implementation with those similar prop-
erties.

References

[1] Helwig, Sabine, et al. Particle Swarm Optimization with
Velocity Adaptation. Department of Computer Science,
University of Erlangen-Nuremberg, Germany. 2009.

[2] Tetris Wiki Authors, et al. ?The Tetris Guideline”.
http://tetris.wikia.com/wiki/Tetris_Guideline 2018.

[3] Lee, Yiyuan. ”Tetris AI - The (Near) Perfect Bot”.
https://codemyroad.wordpress.com/2013/04 /14 /tetris-
ai-the-near-perfect-player 2018.

